Hyers–Ulam stability and existence criteria for coupled fractional differential equations involving p-Laplacian operator

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Existence theorems and Hyers-Ulam stability for a coupled system of fractional differential equations with p-Laplacian operator

In this paper, we study the existence and uniqueness of solution (EUS) as well as Hyers-Ulam stability for a coupled system of FDEs in Caputo’s sense with nonlinear p-Laplacian operator. For this purpose, the suggested coupled system is transferred to an integral system with the help of four Green functions G1 (t, s), G1 (t, s), G2 (t, s), G2 (t, s). Then using topological degree theory and Ler...

متن کامل

Eigenvalue of Fractional Differential Equations with p-Laplacian Operator

Differential equations of fractional order have been recently proved to be valuable tools in the modeling of many phenomena arising from science and engineering, such as viscoelasticity, electrochemistry, control, porous media, and electromagnetism. For detail, see the monographs of Kilbas et al. [1],Miller and Ross [2], and Podlubny [3] and the papers [4–23] and the references therein. In [16]...

متن کامل

Existence and multiplicity of positive solutions for a coupled system of perturbed nonlinear fractional differential equations

In this paper, we consider a coupled system of nonlinear fractional differential equations (FDEs), such that both equations have a particular perturbed terms. Using emph{Leray-Schauder} fixed point theorem, we investigate the existence and multiplicity of positive solutions for this system.

متن کامل

Existence and continuous dependence for fractional neutral functional differential equations

In this paper, we investigate the existence, uniqueness and continuous dependence of solutions of fractional neutral functional differential equations with infinite delay and the Caputo fractional derivative order, by means of the Banach's contraction principle and the Schauder's fixed point theorem.

متن کامل

Existence and nonexistence of positive solutions for the fractional coupled system involving generalized p-Laplacian

In this article, we study a class of fractional coupled systems with Riemann-Stieltjes integral boundary conditions and generalized p-Laplacian which involves two different parameters. Based on the Guo-Krasnosel’skii fixed point theorem, some new results on the existence and nonexistence of positive solutions for the fractional system are received, the impact of the two different parameters on ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Difference Equations

سال: 2018

ISSN: 1687-1847

DOI: 10.1186/s13662-018-1899-x