Hyers–Ulam stability and existence criteria for coupled fractional differential equations involving p-Laplacian operator
نویسندگان
چکیده
منابع مشابه
Existence theorems and Hyers-Ulam stability for a coupled system of fractional differential equations with p-Laplacian operator
In this paper, we study the existence and uniqueness of solution (EUS) as well as Hyers-Ulam stability for a coupled system of FDEs in Caputo’s sense with nonlinear p-Laplacian operator. For this purpose, the suggested coupled system is transferred to an integral system with the help of four Green functions G1 (t, s), G1 (t, s), G2 (t, s), G2 (t, s). Then using topological degree theory and Ler...
متن کاملEigenvalue of Fractional Differential Equations with p-Laplacian Operator
Differential equations of fractional order have been recently proved to be valuable tools in the modeling of many phenomena arising from science and engineering, such as viscoelasticity, electrochemistry, control, porous media, and electromagnetism. For detail, see the monographs of Kilbas et al. [1],Miller and Ross [2], and Podlubny [3] and the papers [4–23] and the references therein. In [16]...
متن کاملExistence and multiplicity of positive solutions for a coupled system of perturbed nonlinear fractional differential equations
In this paper, we consider a coupled system of nonlinear fractional differential equations (FDEs), such that both equations have a particular perturbed terms. Using emph{Leray-Schauder} fixed point theorem, we investigate the existence and multiplicity of positive solutions for this system.
متن کاملExistence and continuous dependence for fractional neutral functional differential equations
In this paper, we investigate the existence, uniqueness and continuous dependence of solutions of fractional neutral functional differential equations with infinite delay and the Caputo fractional derivative order, by means of the Banach's contraction principle and the Schauder's fixed point theorem.
متن کاملExistence and nonexistence of positive solutions for the fractional coupled system involving generalized p-Laplacian
In this article, we study a class of fractional coupled systems with Riemann-Stieltjes integral boundary conditions and generalized p-Laplacian which involves two different parameters. Based on the Guo-Krasnosel’skii fixed point theorem, some new results on the existence and nonexistence of positive solutions for the fractional system are received, the impact of the two different parameters on ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Difference Equations
سال: 2018
ISSN: 1687-1847
DOI: 10.1186/s13662-018-1899-x